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Overview

Overview and structure of the class

Algebraic structures: groups and Rings

Point Group Symmetry in Crystallography

Cells, Miller indices... (to be continued next week)



General Objectives

= To train you on applying theoretical concepts in mathematics learned at the
bachelor level, to Materials Science important concepts, and engineering
problems more broadly.

= Review important Materials Science concepts via the lenses of the mathematics
required to treat them.
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= | am not a mathematician ! But well trained in applied mathematics... and
Materials Science both theoretical and experimental.

= | will teach Materials Science with an emphasis on the applied mathematics

= Prof. Carter will show you examples via computational methods to visualize
mathematical concepts and use them.



General Outline

Mathematical Concepts: a rough schedule

- Weeks 1, 2 &3: Foundations: Groups,
Number theory and vectorial spaces

- Week 3&4: Real and Complex numbers
- Week 4, 5 & 6: Linear algebra;

- Week 7 & 8: Functions: important properties,
main functions (ex, log etc... ) Integration and
derivation

- Week 9: Fourier transform

shutterstock.com - 1606891699

- Week 10: Laplace transforms and ODEs
- Week 11: ODEs and PDEs

- Week 12, 13 & 14: Number theory
(Cobinatorial), Probability and Statistics

= This structure is aligned with the class on Solid State Materials of Prof. Marzari

= These notions should be familiar to you and we sometimes will use one or more in
classes and exercises before having reached the class dedicated to them.



General Outline

Important Materials Science Concepts:

- Structure of Materials: Crystallography

- Thermodynamics and Kinetics

- Phase diagrams and phase transformation
- Diffusion

- Mechanical properties

- Rheology and fluid dynamics

- Visco-elastic materials

- Optical properties and wave propagation

- Quantum Mechanics applied to solid states
physics

- Statistical physics

Structure

Caractérisation

+ modeling
Propriete
Procéde

Performance



Structure of the Class

= Typically, each concept will be spread over 1-2 weeks, with:

- 2-3 hrs reminding basic concepts: 1-3 hrs applying the
concepts to a Materials Science problem

- 1-2hrs of Exercises

Klaus Weltner - Sebastian John
Wolfgang J. Weber - Peter Schuster
Jean Grosjean

- Classes will be Mondays and a bit (20 mn) Tuesday,
followed by exercises.

‘Mathematics
for Physicists

and Engineers

Fundamentals and Interactive Study
Guide

= References:

Second n

» Mathematics for Physicists and Engineers
K. Weltner et. al. — Springer (2nd edition)
Availble online at the EPFL library: https://link.springer.com/book/10.1007/978-3-642-54124-7

A source of notes and exercises

= Mathematics for Engineers T ———
_ B MATHEMATICS
A. Croft and R. Davison — Pearson (5t edition) bFQR ENGINEERS |

= “Algebre Linéaire” et "Analyse”, Gordon - Ellipse
= My notes from Professor Taieb at Lycée Louis-le-Grand (1997)

- You can’t understand those... ©


https://link.springer.com/book/10.1007/978-3-642-54124-7

Structure of the Class

1 PhD assistant:
= Stella Laperrousaz

* Plus Dr. Pierre-Luc Piveteau when help needed

The class will be held live:
= Mondays in MXF1, 15h15 — 17h00: Classes and Exercises
= Tuesdays in MXF1, 09h15-11h00: Classes and Exercises

Examples with Computational tutorials by Prof. Carter:

= 5-6 such sessions will be organized so you can visualize computationally
concepts learned in class.

= The first session tomorrow !

Some exceptions (travels etc..):
= Next week: no class on Monday !

= Will be announced in class and always check instructions also given on
Moodle



Structure of the Class

= Exam:;

= Written exam during the exam session in January/February 2025.

= |tis essential to do the exercises (learn by doing):
= More exercises than what can be done in 1 hour!

= More exercises for more opportunities to learn: ask us for exercises of
previous weeks at the exercise sessions if needed.

= Some are purely mathematical, but most mix math and materials science.

= Tutorials taught by Prof. Carter from MIT:
» Complement the classes to revisit the concepts from a numerical perspective;

= Present other Materials Science concepts and associated math tools;



Week 1 — Algebraic Structures

Algebraic structures form the foundations of the mathematical objects on which
are built what we use as scientists and engineers: real and complex numbers,
functions, integrals, probability and statistics, linear algebra etc...

In the first 2-3weeks we will review these structures and introduce first examples
of applications that relate to Materials Science problems.

It will establish the basis for all the classes, and we will get back to them

particularly at the end of the semester when we review combinatorial with integers,
probability and statistics.

This first two classes are quite abstract and theoretical, this is just an intro, a
deeper view of mathematical objects for your scientific culture. It is also an
important foundation of the structure of Materials.



Relative Integers in Materials Science

= Number theory is the study of integers and integer-valued functions.
= |t appears in the first introduction class of materials structure !

[001]
Plan (110) Plan (110)

[111]

[111]

"[010]

1111 [111]
[100]

= Notations:

» N is the ensemble of positive integers and Z the one for relative
integers (positive and negative).

= Q, RandC are the ensemble of rational, real and complex numbers,
respectively.

= Number theory is quite important in Crystallography !

10



Algebraic structures — Groups and Rings

= A Group is a set G which is closed under an operation *, and satisfies the following properties:

- Closure: foranyx,ye G, x*xye G

- Identity — There is an element e in G, such that forevery x e G, e x x=x*e =X

- Inverse — For every x in G there is an elementy € Gsuchthatx sy =y xx=e

- Associativity — The following identity holds for every x,y,z€ G: x * (y x Z) = (X * y) * Z

A group is abelian if * is commutative: forall x,y € G, x x y =y * X

a
Examples: (Z, +) is an abelian group
(Z , x) is not a group.

(R3, x) is not a group since the cross product x is not associative: b c

Other important notions: cardinal and order: number of elements in the group
Sub-groups

» A Ringis a set R which is closed under two operations + and x and satisfies the following properties:

- (R,+) is an abelian group.

- Associativity of x — Foreverya,b,ce R,ax (bxc)=(axb)xc

- Distributive Properties — For every a, b, ¢ € R the following identities hold: a x (b + ¢) = (a x b) + (a % ¢)
and(b+c)xa=bxa+cxa

- R has an identity for x: there exists e € R such thatforallae R,axe=exa=a.

R is commutative if x is commutative.
11

Example: (Z, +,.) is a commutative Ring.



N and Z

Important notions we will use:

= Order:

It is very intuitive, but the groups N and Z are fully ordered. Any finite sub-group admits a
maximum and a minimum element (easy to show via proof by contradiction (also called the
method of reductio ad absurdum)).

= Recurrence relation:
= An equation that expresses each element of a sequence as a function of the
preceding ones.

= Proof by induction ("Principe de récurence”)
For ny € N, for a proposition P(n) (n € N) to be true for all n > ny, it is necessary and
sufficient that:

- P(ng) is true

- For all n = ng, if P(n) is true, then P(n+1) is also true.

= Strong induction
It is equivalent to show that: if it is true for ny, and for all integers < n, then P(n) is also true.

These are important notions are very useful to demonstrate many formulae used in
modeling various concepts in Materials Science:
- Toughness and the progression of a crack: in exercises
- Optical reflection of a thin layer 12
- efc..



N and Z

= With Groups and Rings structures, one can already create the theoretical basis for number theory.

= Despite the seemingly simple nature of adding and multiplying integers (positive or negative), the
complexity of problems is endless, the beauty of demonstrations and number structures are
unimaginable, and the applications to materials Science problems already significant as we will see.

Examples:

» Fermat last theorem: for (x,y,z,n) € N* and n > 3, there is no solution to the relation: x™ + y™= z"
Envisioned by Fermat in 1637 or so, demonstrated by Andrew Wiles in 1994.

» The Fibonacci sequence: F,=F,.; + F,.»

Golden ratio:

1++5
2

|-

Li et. al., Science 309, 909 (2005)

= Presentin some patterns in nature, it also appears in some stress related phenomena in materials,
but also in quantum computing, in resistor networks, in photonics, hydrogen bonds... 13
interesting review: https://arxiv.org/ftp/arxiv/papers/1801/1801.01369.pdf



N and Z: Fibonacci at EPFL




Crystalline state

Materials in a crystalline state are organized into ordered arrangements of atoms. The chemical
composition of the material forms a motif, that is placed at prescribed positions on a lattice
called the Bravais Lattice.

A set of 3 vectors for the basis for such a Bravais lattice, where every point is a linear
combination with relative integers as coefficients.

Lattice point
r=4a+3b+c

On each point of the lattice, the crystal appears identical: there is a translational symmetry along

the vectors a, b and c.
15



Crystalline state

One can distinguish 7 crystal systems, that reflect the symmetry of the
crystal. 14 Bravais lattice (see next slide).

Crystal = 1 Motif + 1 Bravais lattice

Motif: represents the nature of the materials, its chemical composition,
that is repeated in space to form the crystal.

o. 2 ¢

Metallic Bond Covalent Bond lonic Bond

Bravais lattice: mathematical construction of an infinite set of points with
translational symmetry along three axis that form a vector basis.

B(0,a,b,c) = {M/OM = ld + mb + nc, (, m,n) € 73}
16



Crystalline state

One can distinguish 7 crystal systems, that reflect the symmetry of the crystal. 14
Bravais lattice:

Cubic

Tetragonal a=b#c p I ’fr
a=p=y=90° @ LT
R T
Orthorhombic ~ a#b=c P '@ F g a © g H
oa=p=y=90° @ : S Sy
. a=b=c
Hexagonal a=bz#c P Trigonal or. ¥ a=p=y%
o =B =90% y=120° rhomboedric 90°
7 classes / 14 Bravais
Monoclinic azb=c P c
a=y=90°=f P : primitive
| : centered
Triclinic azb=c p F : face centered
a#p#y C : base centered

http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/lecture1/Bravais.gif




The cubic system

Examples:

Lattice:

Aluminium Diamond

Motifs:

18



Crystalline state: examples

= Because of the nature of their bonds, metals
tend to form highly compact structures such as
body-centered and face-centered cubic or
hexagonal compact:

7

PP

Cr—-Fe-Mo-V-W... Al-Cu-Ni-Ag-Au ...

= The configuration is the same
on every lattice point:

Zn-Mg-Ti—-Zr...



Crystals and Symmetries

= Crystals can be first apprehended by their symmetry, which govern their classification in
the different crystal classes and Bravais lattices.

o Example: why not a base-centered cubic structure ?

o Itis a Primitive tetragonal !

vz
la'll = Ibll = a=,

'l = a
(a,b) = (a,¢) = (b,c) =

NS

= However, one can show that the FCC is also another lattice, a rhombohedric structure !

o And yet FCC is classified with its own Bravais Lattice...

o Forthe FCC, the Bravais lattice vectors are given by:

a' =%(b+c);b’ =%(a+c);c’ =%(a+b)
The primitive cell [la'l| = [1']| = ll¢'ll = a2,

(@b) =(ac) = (bc)="%

20



Crystals and Symmetries

The classification is not about lattice parameter values, it classifies by level of symmetry.

o Arhombohedric with a certain value of lattice parameters acquire novel symmetries
that makes it have a specific Bravais lattice in the cubic structure system.

o Other example: tetragonal vs cubic

Tetragonal structure: ¢ > a Cubic structure: c = a

2-fold rotational symmetry 4-fold rotational symmetry

21



Symmetry Operations: Point symmetries

A symmetry operation is an action that leaves an object unchanged.

Point symmetries are operations that leaves at least one point of an object unchanged. The
element unchanged (point, line, plane...) is called a symmetry element.

There are different kinds of Point symmetry operations that can be reduced to the following:

o lIdentity (1)
»  Symmetry element. entire object
o Inversion (1)
* Action: inversion through a point
*  Symmetry element. a point
o Rotation (N)
» Action: N-fold rotation around an axis (360/N)
«  Symmetry element: a line
o Mirror plane or reflection (m)
* Action: Reflection through a plane
«  Symmetry element: a plane
o Roto-inversion (N)
» Action: Rotation +Inversion

* Symmetry element: a point 22



Symmetry Operations

= Exemples of symmetry operations in 3D:

([
] , -
Ay | Ay || 4 :/
8 ; &
(o] I
o)
4 1 2=m 1
rotate by 90°
(x,y,2) » (7,x,2) (x,v,2) » (X,y,7) (x,y,2) » (x,y,7) (x,y,2) > (y,%,7)
= |n2D:

o Arrotation is always around an axis perpandicular to the 2D plane, so an inversion is a
rotation by 180°.

o There is hence no roto-inversion, as they are just another rotation. 23



Symmetry Operations

= The Bravais lattice is an infinite object with translational symmetry: this brings new symmetry
operations that can leave no point unchanged !

= Travel symmetry operations:

o Glide plane o Screw axis
- Action: Reflect through a plane then * Action: Rotation by 360/N around an

, axis and translation along the axis
translate parallel to it

b

TihE 3
K35 K

a glidtle plane :/

translate by 2 a

2, screw axis
Rotate by 180°
Translate by 2 ¢

= |n2D:

o There is only glide plane operations
24



Crystals and Symmetries

There are an infinite possibilities of Bravais lattices as the lattice parameters (vector
norms and angles) can be chosen arbitrarily.

For certain values however, symmetries appear: why only certain rotations allowed ?

o For discrete objects, rotational symmetries can only be discrete: %"n EN

Possible cells in 2D
o Need to fill the space without void (translational symmetry of the Bravais Lattice);
o This restricts the possible rotational symmetries.




Possible Rotational Symmetries

= This fact reveals the interplay between translational symmetry and a rotational symmetry.

= For a rotational symmetry of angle 0 to exist, translational symmetry indeed brings severe
restrictions:

nt =1 — 2tcos(0),n € Z

T’ = ntu Or:n=1-2cos(0) .
. —n
2

Which has real solutions only for: n = —-1,0,1,2,3

— cos(0) =

With corresponding possible angles:

T=TU B 21 21w 2mW 2mW 21
lul| =1 12’3746

= So, only 1-, 2-, 3-, 4- and 6-fold rotations are allowed.
o 1-fold is the identity. Triclinic only has this symmetry (with an inversion symmetry (1).
o 6-fold only found in hexagonal structure;
o 3-fold found in Trigonal and cubic;
o 4-fold found in tetragonal and square;

26
o 2-fold is found in all structures except Triclinic.



Building Point Groups

= Point groups: a set of point symmetries that apply to a given object, the motif or the lattice,
that form a group.

= |n crystallography, we will only look for point groups with the restricted rotational symmetries.

= A Group is a set G which is closed under an operation * (that is, forany x,y € G, x x y € G)
and satisfies the following properties:

- Identity (fixed point) — There is an element e in G, such that forevery x € G, e * X =X * € = X
- Inverse — For every x in G there is an elementy e Gsuchthatx*xy=y*xx=¢e
- Associativity — The following identity holds for every x,y,z€ G: x * (y * Z) = (X * y) * Z

=  Point Group Symmetry
o Closure: The combination of symmetry operators is a symmetry operator in the group.
o All symmetry operators have an inverse, some are their own inverse.
o ldentity is part of all the Point group symmetry.
o Associativity is respected

= Examples: Can we create a point group with the 2-fold or 4-fold rotation ?
= Point Group 2
o It contains the identity (1 - 27 rotation) and the 2-fold rotation 2.
o The 2-fold identity is its on inverse: 202 = 1
27
= Point Group 4



Building Point Groups

= Let’s consider the Monoclinic structure and build a point symmetry group for this discrete

object.

= We can visualize a group called 2/m (see exercise for solving this with

= Another example are the Group 4 in 2D

|R h
- ‘
=
Y w
(4) - rotane, Cy5Hqg

m— F
ar 4™ T | WOF,
m
: :l K ! F—=IdV——F 4mm
ylg S I |

F
tungsten oxyfluoride

(001)

A motif with a 4-fold symmetry doesn’t have
necessarily a mirror symmetry

A motif with a 4-fold symmetry plus mirror
symmetries, with some planes perpendicular.

28



Point Groups

Examples: point group of the cube. ™,

A cube, or a motif formed by four points at the corners, have the
highest symmetry, with a point group of order 48, i.e. with 48

symmetries. iy ¥

Order of a group: its cardinal, or number of elements in the group. a

Symmetry operations

(H 1 2) 2 0,0,z 3) 2 0,y,0 4 2 x,0,0
}) 3" x,x,x (6) 3" x,x,x (7 3" x,x,x 8) 3" x,x,x
9 3 x,x,x (10) 3~ x,x,x (11) 3~ x,x,x (12) 37 x,x,x
(13) 2 x,x,0 (14) 2 x,x,0 (15) 4 0,0,z (16) 4 0,0,z
(17) 4 x,0,0 (18) 2 0,y,y (19) 2 0,y,y (20) 4+ x,0,0
(21) 4 0,y,0 22) 2 x,0,x (23) 4 0,y,0 24) 2 x,0,x
25 1 0,0,0 (26) m x,y,0 27) m x,0,z (28) m 0,y,z
(29) 3* x,x,x; 0,0,0 30) 3* x,x,x;, 0,0,0 (31) 3* x,x,x, 0,0,0 (32) 3* x,x,x; 0,0,0
(33) 3~ x,x,x; 0,0,0 (34) 3~ x,x,x;, 0,0,0 (35) 3~ x,x,x; 0,0,0 (36) 3~ x,x,%; 0,0,0
(37 m x,x,z (38) m x,x,z (39) 4 0,0,z; 0,0,0 (40) 4+ 0,0,z; 0,0,0
41) 4 x,0,0; 0,0,0 42) m x,y,y 43) m x,y,y (44) 4 x,0,0; 0,0,0
45) 4* 0,y,0; 0,0,0 (46) m x,y,x 47) 4 0,y,0; 0,0,0 (48) m x,y,x

The n-fold rotations have the coordinates of the rotation axis.
The mirror symmetry (m) have the plane of symmetry indicated.

We see the presence of roto-inversion symmetries.
29



Miller Indices and Symmetries

= The point groups shows have all the symmetries around axis we described before (see next
slide). Many other elements are present that ensures the closure property of the group.
o 1and1
o The counter clockwise 3 and 4-fold
o The roto-inversion 3 and 4 (not 2 because it is equivalent to a mirror symmetry)
o 2-fold symmetries around the edges that are the composition of two 4-fold symmetries.

4 [001] 4 [001] a=b=c
Plan (001) Plan (110) Plan (110) a=p=y=90°
[110] | (170] |
[111]
[ r7o1] Z)
<— Plan (010) -
[111]
L [101] )
> L5 >
[010] [010]
[01\1] ‘ [0’11‘] [111]  [111]
[100] Plan (100) [100]
3 directions <100>, symmetry 4 4 directions <111>, symmetry 3
6 directions <110>, symmetry 2 6 plans {110} of symmetry

3 plans {100} of symmetry 30



Crystals and Symmetries

= Each point group must be associated to a certain Bravais Lattice, but all kind of
new symmetries can come from merging a Motif in a Lattice

Crystal ' : .

Cubic Cubic 3-fold axes along 23, m3, 43m, 432,

body diagonals m3m
Tetragonal Tetragonal 4-fold axis P 7:7;3’1 ;‘fn/ 277’1,4 4/1721121;11”
Hexagonal Hexagonal 6-fold axis 67551,8’8164277’6?;27;1 -
Trigonal Hexagonal or 3-fold axis 3, 3, 32, 3m, 3m

Rhombohedral

Three mutually
Orthorhombic  Orthorhombic  perpendicular 2-fold 222, 2mm, mmm
axes or mirror planes

Monoclinic Voonelmic T B2 2C a;(llsnc;r LUl 2, m, 2/m

Triclinic Triclinic none 1,1

31



Point Groups

= Considering now the lattice and the motif together, new restrictions appears when
looking at the symmetry of the crystal.

= Since we are limited to 1,2,3,4 and 6 fold rotations because of translational symmetry,
we will not be able to construct a crystal with a motif that has a different rotational
symmetry element.

= When we want to merge the symmetry of the motif and the one of the Bravais lattice,
restrictions occur and the symmetry of the crystal will result of this analysis.

o The rotational symmetry of the motif must coincide with the one of the Lattice;

o So each point group can be associated to a certain Bravais Lattice, but all kind of new

symmetries can come from merging a Motif in a Lattice. 1



Symmetries in 2D: Plane Groups

R R_ R
= Exemple: 4 fold symmetry will only be associated to the square =¥ =y
lattice. L
4 4 4
p4 (10)
a square P 4-fold axis with two
a=b ;y=90° reflection lines R R R
CEE
4 U8 B
zﬂRmmﬂRmmﬂRm
o< X o< < 0
LR S .
= One could think that there is only 2 plane groups (like space groups but in 2D) T TR '
associated with the 2 point groups noted 4 and 4mm. pamm (11)

» There is however a third one ! Associated to a glide plane symmetry noted g.
= Adding glide and screw symmetries create a new class of group of symmetries
called space group in 3D.

' R
o O ‘o o
4 ;H
1
o< M
B
R . R
o= 20 e X
4 .

pdgm (12): 33



Symmetries in 3D: Space Groups

The construction of the space groups associated to the 3D 14 Bravais lattices, from the 32
3D point groups, proceed similarly, with noticeable differences:
o 3D has 32 point groups and not 10, because of extra possible symmetry operations:
inversion and roto-inversion.
o For glide planes, the glide can happens along different directions in 3D;
o Screw axis operations also occur: n,, is a n-fold rotation followed by a translation

The first letter is a capital letter indicating the Bravais lattice, and many different types occur:
P, I, F, and other letters depending on the base-centered plane.

Glides bring several new types of symmetries and notations:
o a,b,c: glide translation along half the lattice vector of this face;
o N,d: glide translation along half and a quarter respectively, along the face diagonal
o e: two glides with the same glide plane and translation along two half-lattice vectors.

There are 230 space groups that can be built from the 32 point group in 3D.

A list of all the space groups can be found here:

A more concise one:

You can find them all here: 34


https://en.wikipedia.org/wiki/List_of_space_groups
https://en.wikipedia.org/wiki/Space_group
https://onlinelibrary.wiley.com/iucr/itc/Ac/contents/

Symmetries in 3D: Space Groups

o For the cubic Bravais Lattice, the BCC and FCC structures add atoms that do not
change the symmetry operations !
o Space groups are then P4/m32/m, 14/m32/m and F4/m32/m respectively.
o Example: let’s look at F4/m32/m (#225)

= What happens when we change the motif ? Diamond structure:

o The extra atom in this case changes the possible symmetries
o Space group: Fd3m (#227): apparition of a glide symmetry.
o Also highly symmetric, order of the group 48 !

= As the motif looses symmetry, the symmetry of the
resulting crystal tends to be lower.
= Space group F43m (#216): less symmetries !
Order of the group 24



The cubic system

Symmetry is an important way to approach the crystalline state. However, it is equally
important and very useful to describe crystals in a more geometric way.

This approach leads to deeper understanding of crystal orientations, X-ray diffractions and
reciprocal spaces.

To represent crystals, we use different types of unit cells. The conventional unit cell is the most
commonly used as it exhibits the symmetry of the crystal. They can however contain several
motifs.

Primitive unit cells are cells with one motif.
In this approach, number theory and Euclidean geometry find profound usefulness.

(a,b,c) is not a basis for the BCC, as P has the coordinates (7%, 72, V2).

Primitive cubic Body-centered cubic
basis: (a,b,c) basis: (a’,b’,c’) 36



The cubic system

Primitive cell Conventionnal cell
* Find the moaotif; * Find the matif;
» Translate it along the BCC lattice; » Place it within the Conventional cell;

» Translate the cell along the orthonormal basis a,
b and ¢ of the cubic system,;




Coordination

One can represent atoms as rigid spheres to give some insights about the atomic
arrangement and resulting properties.

A first important notion is the coordination number: number of closest neighbors, ie when
spheres are in contact.

For primitive cubic:

38



Coordination

- Coordination number:

Hexagonal close-packed :

-Coordination: 12

-Close-packed plans are the (1000)

39



Coordination

= Face-centered Cubic:

- Coordination: 12

- Close-packed plans (111)

Empilement compact Cubique Faces Centrées
( cubic close- pack CCP, ABC )

40



Number of atoms per unit cell

- Primitive cubic:
= Motifs at the corners of the cube count for 1/8

= The primitive cell has as expected 1 motif.

- Body-centered conventional cell:
= Motifs at the corners of the cube count for 1/8
= The motif inside the cell count for 1.

= Hence the BCC conventional unit cell has 2 motifs.




Density and Free volume

From basic geomtric and vectorial consideration of the unit cell, one call calculate
key properties of materials such as density and free volume.

- DenS|ty p — Natomsperunit cellxmatoms p — Natomes par mailles Xmatome
Vunit cell V '
madtlle
: . . Natomes par mailles ><Vatome
-Packing fraction: c =

Vmaille

-Direction and planes of high density

Cubique simple  Cubique faces centrées ~ Cubique centré

42



Structure of Metals

= Most metals crystalize in the BCC or FCC structure:

Face-centered Cubic (FCC)

Al-Cu-Ni-Ag-Au-Fe...

Body-centered Cubic (BCC)

Cr-Fe-Mo-V-W-Ta...

Free volume . 26%

Iron exhibits polymorphism, ie has different
equilibrium structures at different
temperatures:

Fe: bcc for T > 1403°C
and T< 910°C
fcc for 910°C < T <1403°C

Free volume . 32%

43



SUMMARY

We introduced the basic notions of groups and rings, the foundation onto which
number manipulations relies.

We reviewed some basic concepts of symmetry in crystals;
We defined and gave examples of point group symmetries.

We introduced other notions of crystallography that will be useful for the rest of the
class.

Next week

= We will remind the concepts of divisibility and prime numbers in the context of
crystallography

= \We continue reviewing the foundation by discussing fields and vector spaces;

= \We will then derive important results regarding the cubic structure of materials
using prime numbers and basic geometry calculations.

44



