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Overview

§ Overview and structure of the class

§ Algebraic structures: groups and Rings

§ Point Group Symmetry in Crystallography

§ Cells, Miller indices… (to be continued next week)
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General Objectives
§ To train you on applying theoretical concepts in mathematics learned at the 

bachelor level, to Materials Science important concepts, and engineering 
problems more broadly. 

§ Review important Materials Science concepts via the lenses of the mathematics 
required to treat them. 

§ I am not a mathematician ! But well trained in applied mathematics… and 
Materials Science both theoretical and experimental. 

§ I will teach Materials Science with an emphasis on the applied mathematics

§ Prof. Carter will show you examples via computational methods to visualize 
mathematical concepts and use them. 

t



General Outline
Mathematical Concepts: a rough schedule

- Weeks 1, 2 &3: Foundations:  Groups, 
Number theory and vectorial spaces

- Week 3&4: Real and Complex numbers

- Week 4, 5 & 6: Linear algebra; 

- Week 7 & 8: Functions: important properties, 
main functions (ex, log etc… ) Integration and 
derivation

- Week 9: Fourier transform

- Week 10: Laplace transforms and ODEs

- Week 11: ODEs and PDEs

- Week 12, 13 & 14: Number theory 
(Cobinatorial), Probability and Statistics

§ This structure is aligned with the class on Solid State Materials of Prof. Marzari

§ These notions should be familiar to you and we sometimes will use one or more in 
classes and exercises before having reached the class dedicated to them.  



General Outline

Important Materials Science Concepts: 

- Structure of Materials: Crystallography

- Thermodynamics and Kinetics

- Phase diagrams and phase transformation

- Diffusion

- Mechanical properties

- Rheology and fluid dynamics

- Visco-elastic materials

- Optical properties and wave propagation

- Quantum Mechanics applied to solid states 
physics

- Statistical physics

+ modeling
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Structure of the Class

§ References:
§ Mathematics for Physicists and Engineers

K. Weltner et. al. – Springer (2nd edition)

Availble online at the EPFL library: https://link.springer.com/book/10.1007/978-3-642-54124-7

A source of notes and exercises 

§ Mathematics for Engineers

A. Croft and R. Davison – Pearson (5th edition)

§ “Algèbre Linéaire” et ”Analyse”, Gordon - Ellipse

§ My notes from Professor Taieb at Lycée Louis-le-Grand (1997)

- You can’t understand those… J

§ Typically, each concept will be spread over 1-2 weeks, with: 

- 2-3 hrs reminding basic concepts: 1-3 hrs applying the 
concepts to a Materials Science problem

- 1-2hrs of Exercises

- Classes will be Mondays and a bit (20 mn) Tuesday, 
followed by exercises. 

https://link.springer.com/book/10.1007/978-3-642-54124-7
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Structure of the Class

§ 1 PhD assistant: 
§ Stella Laperrousaz

§ Plus Dr. Pierre-Luc Piveteau when help needed

§ The class will be held live: 

§ Mondays in MXF1, 15h15 – 17h00: Classes and Exercises

§ Tuesdays in MXF1, 09h15-11h00:  Classes and Exercises

§ Some exceptions (travels etc..): 
§ Next week: no class on Monday !

§ Will be announced in class and always check instructions also given on 
Moodle

§ Examples with Computational tutorials by Prof. Carter: 
§ 5-6 such sessions will be organized so you can visualize computationally 

concepts learned in class. 

§ The first session tomorrow !
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§ Exam:

§ Written exam during the exam session in January/February 2025.   

§ It is essential to do the exercises (learn by doing): 

§ More exercises than what can be done in 1 hour ! 

§ More exercises for more opportunities to learn: ask us for exercises of 
previous weeks at the exercise sessions if needed. 

§ Some are purely mathematical, but most mix math and materials science. 

Structure of the Class

§ Tutorials taught by Prof. Carter from MIT:

§ Complement the classes to revisit the concepts from a numerical perspective;

§ Present other Materials Science concepts and associated math tools;  
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Week 1 – Algebraic Structures

§ Algebraic structures form the foundations of the mathematical objects on which 
are built what we use as scientists and engineers: real and complex numbers, 
functions, integrals, probability and statistics, linear algebra etc…  

§ In the first 2-3weeks we will review these structures and introduce first examples 
of applications that relate to Materials Science problems. 

§ It will establish the basis for all the classes, and we will get back to them 
particularly at the end of the semester when we review combinatorial with integers, 
probability and statistics. 

§ This first two classes are quite abstract and theoretical, this is just an intro, a 
deeper view of mathematical objects for your scientific culture. It is also an 
important foundation of the structure of Materials. 

     



Relative Integers in Materials Science

§ Number theory is the study of integers and integer-valued functions. 

§ It appears in the first introduction class of materials structure !

§ Notations: 

§ ℕ is the ensemble of positive integers and ℤ the one for relative 
integers (positive and negative). 

§ ℚ,		ℝ and	ℂ are the ensemble of rational, real and complex numbers, 
respectively. 

§ Number theory is quite important in Crystallography !

[100]

[010]

[001]

[111]

[111]

[111][111]

Plan (110)Plan (110)
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§ A Group is a set G which is closed under an operation ∗, and satisfies the following properties:

- Closure: for any x, y ∈ G, x ∗ y ∈ G
- Identity – There is an element e in G, such that for every x ∈ G, e ∗ x = x ∗ e = x
- Inverse – For every x in G there is an element y ∈ G such that x ∗ y = y ∗ x = e
- Associativity – The following identity holds for every x, y, z ∈ G: x ∗ (y ∗ z) = (x ∗ y) ∗ z

A group is abelian if ∗ is commutative: for all x, y ∈ G, x ∗ y = y ∗ x

Examples:  (ℤ , +) is an abelian group 
 (ℤ , x) is not a group. 
 (ℝ3, x) is not a group since the cross product x is not associative: 

Other important notions: cardinal and order: number of elements in the group
    Sub-groups 

Algebraic structures – Groups and Rings

§ A Ring is a set R which is closed under two operations + and × and satisfies the following properties:

- (R,+) is an abelian group.
- Associativity of × – For every a, b, c ∈ R, a × (b × c) = (a × b) × c
- Distributive Properties – For every a, b, c ∈ R the following identities hold: a × (b + c) = (a × b) + (a × c)

and (b + c) × a = b × a + c × a
- R has an identity for x: there exists e ∈ R such that for all a ∈ R, a x e = e x a = a.

R is commutative if x is commutative. 

Example: (ℤ , +,.) is a commutative Ring. 

a

b c
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§ Important notions we will use: 

§ Order: 
It is very intuitive, but the groups ℕ and ℤ are fully ordered. Any finite sub-group admits a 
maximum and a minimum element (easy to show via proof by contradiction (also called the 
method of reductio ad absurdum)). 

§ Recurrence relation:
§ An equation that expresses each element of a sequence as a function of the 

preceding ones.

§ Proof by induction (”Principe de récurence”)
For n0 ∈ ℕ, for a proposition P(n) (n ∈ ℕ ) to be true for all n ≥ n0, it is necessary and 
sufficient that:  
 - P(n0) is true
 - For all n ≥ n0, if P(n) is true, then P(n+1) is also true. 

§ Strong induction
It is equivalent to show that: if it is true for n0, and for all integers < n, then P(n) is also true. 

These are important notions are very useful to demonstrate many formulae used in 
modeling various concepts in Materials Science: 
 - Toughness and the progression of a crack: in exercises
 - Optical reflection of a thin layer 
        - etc.. 

ℕ and ℤ
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§ With Groups and Rings structures, one can already create the theoretical basis for number theory. 

§ Despite the seemingly simple nature of adding and multiplying integers (positive or negative), the 
complexity of problems is endless, the beauty of demonstrations and number structures are 
unimaginable, and the applications to materials Science problems already significant as we will see.

     Examples:
• Fermat last theorem: for 𝑥, 𝑦, 𝑧, 𝑛 ∈ ℕ∗ and 𝑛 ≥ 3, there is no solution to the relation: 𝑥" + 𝑦"= 𝑧"
Envisioned by Fermat in 1637 or so, demonstrated by Andrew Wiles in 1994.

• The Fibonacci sequence: Fn = Fn-1 + Fn-2 

ℕ and ℤ

Li et. al., Science 309, 909 (2005)

§ Present in some patterns in nature, it also appears in some stress related phenomena in materials, 
but also in quantum computing, in resistor networks, in photonics, hydrogen bonds… 

     interesting review: https://arxiv.org/ftp/arxiv/papers/1801/1801.01369.pdf

𝐹! =
𝜑! − 𝜓!

5

Golden ratio: 

𝜑 =
1 + 5
2

𝜓 = − "
#

= "$ %
&



ℕ and ℤ: Fibonacci at EPFL



Materials in a crystalline state are organized into ordered arrangements of atoms. The chemical 
composition of the material forms a motif, that is placed at prescribed positions on a lattice 
called the Bravais Lattice. 
A set of 3 vectors for the basis for such a Bravais lattice, where every point is a linear 
combination with relative integers as coefficients. 

g

b

a

a

b

c

Lattice point
r = 4a + 3b + c

On each point of the lattice, the crystal appears identical: there is a translational symmetry along 
the vectors a, b and c. 
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Crystalline state



One can distinguish 7 crystal systems, that reflect the symmetry of the 
crystal. 14 Bravais lattice (see next slide).

Motif: represents the nature of the materials, its chemical composition, 
that is repeated in space to form the crystal.  

Crystal = 1 Motif + 1 Bravais lattice

Cs+ Cl-Fe
C

C

Bravais lattice: mathematical construction of an infinite set of points with 
translational symmetry along three axis that form a vector basis. 

! !, !, !, ! = !/!" = !! + !! + !!, (!,!, !) ∈ ℤ!  

Crystalline state
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Metallic Bond Covalent Bond Ionic Bond



Cubic

Tetragonal

Orthorhombic

Hexagonal

Monoclinic

Triclinic

a = b = c
a = b = g = 90º

a = b ¹ c
a = b = g = 90º

a ¹ b ¹ c
a = b = g = 90º

a = b ¹ c
a = b = 90º; g = 120º

a ¹ b ¹ c
a = g = 90º ¹ b

a ¹ b ¹ c
a ¹ b ¹ g 

a = b = c
a = b = g ¹ 
90º

7 classes / 14 Bravais

P : primitive
I : centered
F : face centered
C : base centered

!""#$%%&&&'(!)*'+,'-('./%0(1%!)2)3%3"4.(".4)5+653+1073%1)(".4)8%94-:-03';06

Trigonal or 
rhomboedric

Crystalline state
One can distinguish 7 crystal systems, that reflect the symmetry of the crystal. 14 
Bravais lattice:



NaCl Diamond

Examples:

Aluminium

Motifs:
Na+ Cl-Al

C

C

Lattice:    Face-centered cubic

18

The cubic system



§  Because of the nature of their bonds, metals 
tend to form highly compact structures such as 
body-centered and face-centered cubic or 
hexagonal compact: 

Crystalline state: examples

Al – Cu – Ni – Ag – Au  … Cr – Fe – Mo – V – W… 

Zn – Mg – Ti – Zr … 

§ The configuration is the same 
on every lattice point: 
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Crystals and Symmetries

§ Crystals can be first apprehended by their symmetry, which govern their classification in 
the different crystal classes and Bravais lattices. 

o Example: why not a base-centered cubic structure ? 

!

"

!
"

#

O

o It is a Primitive tetragonal ! 

𝒂′ = 𝒃′ = 𝑎 !
!

, 
𝒄′ = 𝑎
+𝒂,𝒃 = +𝒂,𝒄 = +𝒃, 𝒄 = "

!
 

𝒂′ b′
c′

𝑎
§ However, one can show that the FCC is also another lattice, a rhombohedric structure ! 

o And yet FCC is classified with its own Bravais Lattice… 

𝑎

𝑏

𝑐
o  For the FCC, the Bravais lattice vectors are given by: 

𝒂# = $
!
𝐛 + 𝐜 ; 𝒃# = $

!
𝒂 + 𝒄 ; 𝒄# = $

!
𝒂 + 𝒃

The primitive cell 𝒂′ = 𝒃′ = 𝒄′ = 𝑎 !
!

, 
+𝒂,𝒃 = +𝒂,𝒄 = +𝒃, 𝒄 = 𝝅

𝟑
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Crystals and Symmetries

§ The classification is not about lattice parameter values, it classifies by level of symmetry. 

o A rhombohedric with a certain value of lattice parameters acquire novel symmetries 
that makes it have a specific Bravais lattice in the cubic structure system.  

o Other example: tetragonal vs cubic 

!

"

#
!

"

#

!

"

#

!

"

#

!

"

!

"

#
!

" #

!

"

#
Tetragonal structure: 𝑐 > 𝑎

2-fold rotational symmetry

Cubic structure: 𝑐 = 𝑎

4-fold rotational symmetry
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§ A symmetry operation is an action that leaves an object unchanged. 

§ Point symmetries are operations that leaves at least one point of an object unchanged. The 
element unchanged (point, line, plane…) is called a symmetry element. 

§ There are different kinds of Point symmetry operations that can be reduced to the following: 

o Identity (1)

• Symmetry element: entire object

o Inversion (1𝟏)
• Action: inversion through a point

• Symmetry element: a point

o Rotation (N)

• Action: N-fold rotation around an axis (360/N)

• Symmetry element: a line

o Mirror plane or reflection (m)
• Action: Reflection through a plane

• Symmetry element: a plane

o Roto-inversion (1𝑵)
• Action: Rotation +Inversion

• Symmetry element: a point

Symmetry Operations: Point symmetries
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§ Exemples of symmetry operations in 3D: 

Symmetry Operations

§ In 2D: 

o A rotation is always around an axis perpandicular to the 2D plane, so an inversion is a 
rotation by 180°.  

o There is hence no roto-inversion, as they are just another rotation. 
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§ The Bravais lattice is an infinite object with translational symmetry: this brings new symmetry 
operations that can leave no point unchanged ! 

§ Travel symmetry operations: 

o Glide plane
• Action: Reflect through a plane then

 translate parallel to it

Symmetry Operations

o Screw axis
• Action: Rotation by 360/N around an 

axis and translation along the axis

§ In 2D: 

o There is only glide plane operations
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Crystals and Symmetries

§ There are an infinite possibilities of Bravais lattices as the lattice parameters (vector 
norms and angles) can be chosen arbitrarily. 

§ For certain values however, symmetries appear: why only certain rotations allowed ?

o For discrete objects, rotational symmetries can only be discrete: &'
!
, 𝑛 ∈ ℕ 

§ Possible cells in 2D
o Need to fill the space without void (translational symmetry of the Bravais Lattice);
o This restricts the possible rotational symmetries. 
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Possible Rotational Symmetries

§ This fact reveals the interplay between translational symmetry and a rotational symmetry.

§ For a rotational symmetry of angle θ to exist, translational symmetry indeed brings severe 
restrictions: 

A B𝝉 = 𝜏𝒖
𝒖 = 𝟏

𝝉′ = 𝑛𝜏𝒖

𝜃

B’ A’

𝜃

𝑛𝜏 = 𝜏 − 2𝜏cos θ , 𝑛 ∈ ℤ

Or: 𝑛 = 1 − 2cos θ

→ cos θ =
1 − 𝑛
2

Which has real solutions only for: 𝑛 = −1, 0, 1, 2, 3

With corresponding possible angles: 

2𝜋
1 ,

2𝜋
2 ,

2𝜋
3 ,

2𝜋
4 ,

2𝜋
6

§ So, only 1-, 2-, 3-, 4- and 6-fold rotations are allowed.

o 1-fold is the identity. Triclinic only has this symmetry (with an inversion symmetry (@1). 

o 6-fold only found in hexagonal structure;

o 3-fold found in Trigonal and cubic;

o 4-fold found in tetragonal and square;

o 2-fold is found in all structures except Triclinic. 
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§ Point groups: a set of point symmetries that apply to a given object, the motif or the lattice, 
that form a group. 

§ In crystallography, we will only look for point groups with the restricted rotational symmetries. 

§ A Group is a set G which is closed under an operation ∗ (that is, for any x, y ∈ G, x ∗ y ∈ G) 
and satisfies the following properties:

- Identity (fixed point) – There is an element e in G, such that for every x ∈ G, e ∗ x = x ∗ e = x
- Inverse – For every x in G there is an element y ∈ G such that x ∗ y = y ∗ x = e
- Associativity – The following identity holds for every x, y, z ∈ G: x ∗ (y ∗ z) = (x ∗ y) ∗ z

Building Point Groups

§ Examples: Can we create a point group with the 2-fold or 4-fold rotation ?
§  Point Group 2 

o It contains the identity (1 - 2𝜋 rotation) and the 2-fold rotation 2.
o The 2-fold identity is its on inverse: 2o2 = 1	

§  Point Group 4 

§ Point Group Symmetry
o Closure: The combination of symmetry operators is a symmetry operator in the group. 
o All symmetry operators have an inverse, some are their own inverse. 
o Identity is part of all the Point group symmetry. 
o Associativity is respected
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Building Point Groups

§ Let’s consider the Monoclinic structure and build a point symmetry group for this discrete 
object. 

§ We can visualize a group called 2/m (see exercise for solving this with 

!

"

#

$ %

&

(001)001

!

"

#
O!

"
#$

(001)

§ Another example are the Group 4 in 2D

§ A motif with a 4-fold symmetry doesn’t have 
necessarily a mirror symmetry

§ A motif with a 4-fold symmetry plus mirror 
symmetries, with some planes perpendicular. 
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Point Groups

§ Examples: point group of the cube. 

§ A cube, or a motif formed by four points at the corners, have the 
highest symmetry, with a point group of order 48, i.e. with 48 
symmetries.

§ Order of a group: its cardinal, or number of elements in the group. 

O

!

"

#

§ The n-fold rotations have the coordinates of the rotation axis. 

§ The mirror symmetry (m) have the plane of symmetry indicated. 

§ We see the presence of roto-inversion symmetries.  



3 directions <100>, symmetry 4 
6 directions <110>, symmetry 2
3 plans {100} of symmetry

4 directions <111>, symmetry 3
6 plans {110}  of symmetry

Miller Indices and Symmetries
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§ The point groups shows have all the symmetries around axis we described before (see next 
slide). Many other elements are present that ensures the closure property of the group. 
o 1 and @1 
o The counter clockwise 3 and 4-fold
o The roto-inversion @3 and @4!"#$%!@2!&'()*+'!,%!,+!'-*,.)/'#%!%$!)!0,11$1!+200'%123!
o 2-fold symmetries around the edges that are the composition of two 4-fold symmetries. 

a = b = c
a = b = g = 90º

[100]

[010]

[001]

[110] [110]

[101]

[101]

[011][011]

[100]

[010]

[001]

[111]

[111]

[111][111]

Plan (010)

Plan (001)

Plan (100)

Plan (110)Plan (110)
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Crystals and Symmetries

§ Each point group must be associated to a certain Bravais Lattice, but all kind of 
new symmetries can come from merging a Motif in a Lattice
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§ Considering now the lattice and the motif together, new restrictions appears when 
looking at the symmetry of the crystal. 

§ Since we are limited to 1,2,3,4 and 6 fold rotations because of translational symmetry, 
we will not be able to construct a crystal with a motif that has a different rotational 
symmetry element. 

§ When we want to merge the symmetry of the motif and the one of the Bravais lattice, 
restrictions occur and the symmetry of the crystal will result of this analysis. 

o The rotational symmetry of the motif must coincide with the one of the Lattice;

o So each point group can be associated to a certain Bravais Lattice, but all kind of new 
symmetries can come from merging a Motif in a Lattice. 

Point Groups
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Symmetries in 2D: Plane Groups

§ Exemple: 4 fold symmetry will only be associated to the square 
lattice. 

§ One could think that there is only 2 plane groups (like space groups but in 2D) 
associated with the 2 point groups noted 4 and 4mm. 

§ There is however a third one ! Associated to a glide plane symmetry noted g.
§ Adding glide and screw symmetries create a new class of group of symmetries 

called space group in 3D.  
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Symmetries in 3D: Space Groups

§ The construction of the space groups associated to the 3D 14 Bravais lattices, from the 32 
3D point groups, proceed similarly, with noticeable differences: 
o 3D has 32 point groups and not 10, because of extra possible symmetry operations: 

inversion and roto-inversion. 
o For glide planes, the glide can happens along different directions in 3D;
o Screw axis operations also occur: nm is a n-fold rotation followed by a translation 

§ The first letter is a capital letter indicating the Bravais lattice, and many different types occur: 
P, I, F, and other letters depending on the base-centered plane. 

§ Glides bring several new types of symmetries and notations: 
o a,b,c: glide translation along half the lattice vector of this face;
o N,d: glide translation along half and a quarter respectively, along the face diagonal 
o e: two glides with the same glide plane and translation along two half-lattice vectors. 

§ There are 230 space groups that can be built from the 32 point group in 3D. 

§ A list of all the space groups can be found here: 
https://en.wikipedia.org/wiki/List_of_space_groups

§ A more concise one: https://en.wikipedia.org/wiki/Space_group

§ You can find them all here: https://onlinelibrary.wiley.com/iucr/itc/Ac/contents/

https://en.wikipedia.org/wiki/List_of_space_groups
https://en.wikipedia.org/wiki/Space_group
https://onlinelibrary.wiley.com/iucr/itc/Ac/contents/
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Symmetries in 3D: Space Groups

O

!

"

#

O

!

"

#

O

!

"

#

o For the cubic Bravais Lattice, the BCC and FCC structures add atoms that do not 
change the symmetry operations ! 

o Space groups are then 𝑃4/𝑚@32/𝑚, I4/𝑚@32/𝑚 and F4/𝑚@32/𝑚 respectively. 
o Example: let’s look at F4/𝑚@32/𝑚 (#225)

§ What happens when we change the motif ? Diamond structure: 

o The extra atom in this case changes the possible symmetries
o Space group: Fd@3𝑚 (#227): apparition of a glide symmetry. 
o Also highly symmetric, order of the group 48 !

§ As the motif looses symmetry, the symmetry of the 
resulting crystal tends to be lower. 
§ Space group F@43𝑚 (#216): less symmetries ! 

Order of the group 24

Zn

S



§ Symmetry is an important way to approach the crystalline state. However, it is equally 
important and very useful to describe crystals in a more geometric way. 

§ This approach leads to deeper understanding of crystal orientations, X-ray diffractions and 
reciprocal spaces. 

§ To represent crystals, we use different types of unit cells. The conventional unit cell is the most 
commonly used as it exhibits the symmetry of the crystal. They can however contain several 
motifs. 

§ Primitive unit cells are cells with one motif. 

§ In this approach, number theory and Euclidean geometry find profound usefulness.

§ (a,b,c) is not a basis for the BCC, as P has the coordinates (½, ½, ½). 

Primitive cubic
basis: (a,b,c)

Body-centered cubic
basis: (a’,b’,c’)  

a
b

c
P

36

The cubic system



Conventionnal cell

• Find the motif;

• Place it within the Conventional cell;

• Translate the cell along the orthonormal basis a, 
b and c of the cubic system;

Primitive cell

• Find the motif;

• Translate it along the BCC lattice; 

!
"

#$$

"%!%

#%

The cubic system



§ One can represent atoms as rigid spheres to give some insights about the atomic 
arrangement and resulting properties. 

§ A first important notion is the coordination number: number of closest neighbors, ie when 
spheres are in contact. 

§ For primitive cubic: 

Coordination

38



- Coordination number:

- Close-packed planes

6 8 12

Hexagonal close-packed : 

-Coordination: 12

-Close-packed plans are the (1000)

39

Coordination



- Coordination: 12

- Close-packed plans (111)

§ Face-centered Cubic:

40

Coordination



- Body-centered conventional cell: 

§ Motifs at the corners of the cube count for 1/8 

§ The motif inside the cell count for 1. 

§ Hence the BCC conventional unit cell has 2 motifs. 

- Primitive cubic: 

§ Motifs at the corners of the cube count for 1/8

§ The primitive cell has as expected 1 motif. 

Number of atoms per unit cell



From basic geomtric and vectorial consideration of the unit cell, one call calculate
key properties of materials such as density and free volume. 

- Density: 𝜌 = !#$%&' ()* +,-$ .)//×##$%&'

$+,-$ .)//

-Packing fraction: 

-Direction and planes of high density

Density and Free volume

42



Body-centered Cubic (BCC)

Free volume :  32%

Iron exhibits polymorphism, ie has different
equilibrium structures at different
temperatures:

Fe: bcc for T > 1403ºC
and     T <   910ºC

fcc for 910ºC < T < 1403ºC

Structure of Metals

Face-centered Cubic (FCC)

Free volume :  26%

Al – Cu – Ni – Ag – Au – Fe … 

Cr – Fe – Mo – V – W – Ta … 

§ Most metals crystalize in the BCC or FCC structure: 

43
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SUMMARY

§ We introduced the basic notions of groups and rings, the foundation onto which 
number manipulations relies. 

§ We reviewed some basic concepts of symmetry in crystals;

§ We defined and gave examples of point group symmetries. 

§ We introduced other notions of crystallography that will be useful for the rest of the 
class. 

§ Next week 

§ We will remind the concepts of divisibility and prime numbers in the context of 
crystallography

§ We continue reviewing the foundation by discussing fields and vector spaces;

§ We will then derive important results regarding the cubic structure of materials 
using prime numbers and basic geometry calculations. 


